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Finite-dimensional representations of U,(C(n + 1)) at 
arbitrary q 
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School of Mathematical Sciences. Australian National University, Canberra, Australia 

Received 21 Ju'ne 1993 

Abstract. A 'method is developed to mnsrmct irreducible representations (irreps) of the 
quantum supergroup Uq(C(n f I)) in a systematic fashion It is shown that every finie 
dimensional irrep of this quantum supergroup at generic q is a deformation ofa  finitedimensional 
irrep of its underlying Lie supedgebra C(n + 1) and is essentially uniquely characterized by 
a highest weight The character of the irrep is given. When q is a , p t  of unity, all irkps of 
U,(C(n i 1)) are finitedimensional; multiply atypical highest-weight.irreps and (semi)cyclic 
irreps also exist. As examples. all the highest weight and (semi)cyclic.irreps of Uq(C(2)) are 
thoroughly studied. 

1. Introduction 

This is the third of a series of papers which systematically develop the representation theory 
of the quantum supergroups [ 11 associated with the basic classical Lie superalgebras [2]. The 
first paper 131 studied the structures of the finitedimensional representations of the quantum 
supergroup U,(gL(m I n)) at arbitrary q (the finite-dimensional irreps of U,(gl(m I 1)) have 
been explicitly constructed in [4]), while the second one [5] treated the representation theory 
of U,(B(O,n)).  It is the aim of the present paper to study U,(C(n + 1)). 

Vigorous study of the theory of Lie superalgebras began in the 1970s (for reviews 
see [21), largely motivated by the discovery of supersymmetry in theoretical physics. 
It was clear from the very beginning that although some properties of ordinary Lie 
algebras are shared by their &-graded counterparts, the Lie superalgebras are by no means 
straightforward generalizations of ordinary Lie algebras; in particular, their representation 
theory is drastically different from that of the latter. 

Recall that the Weyl groups are of paramount importance in the study of the finite- 
dimensional irreps of the Lie algebras; they enable one to compute the characters which 
embody all the information about the weight spaces and dimensions, etc, of the irreps. Also, 
the finite-dimensional representations of Lie algebras are completely reducible. This fact 
makes it possible to understand the structures of all finitedimensional representations. 

However, it is not possible in general (except for osp(1 I 2n)) to introduce a Weyl group 
for a Lie superalgebra, which is not simply the Weyl group of the maximal even subalgebra 
The so-called Weyl groups of Lie superalgebras embody little useful information about the 
odd generators, thus not allowing the determination of the structures of irreps. Also, finite- 
dimensional representations of Lie superalgebras are not completely reducible. These facts 
make the representation theory of Lie superalgebras an extremely difficult subject to study. 

0305-4470/93iZ37041+19$07.50 @ 1993 IOP Publishing Ltd 7041 
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Quantum supergroups [I] are one-parameter deformations of the universal enveloping 
algebras of basic classical Lie supedgebras, the origin of which may be traced back to 
the Perk-Schultz solution of the Yang-Baxter equation and the work of Bazhanov and 
Shadrikov [6], although the systematical study of these algebraic structures only began very 
recently [I]. It has become clear that the quantum supergroups are of great importance to 
a variety of fields in theoretical physics and mathematics, e.g., quantum field theory and 
knot theory, apart from soluble models in statistical mechanics. In all the applications of 
quantum supergroups, their finite-dimensional representations play a central role. However, 
our understanding of such representations is very incomplete. 

It is by now well known that the representation theory of ordinary quantum groups at 
generic q is very much the same as that of the corresponding Lie algebras [7]. Lusztig and 
Ross0 [7] proved that each finite-dimensional i m p  of a quantum group is a deformation 
of an irrep of the underlying Lie algebra, and all finite-dimensional representations are 
completely reducible. Rosso’s proof made essential use of the properties of the Weyl 
groups of the underlying Lie algebras, while the main ideas of Lusztig’s proof are as 
follows. In the q + 1 limif an integrable highest-weight irrep rr of a quantum group 
V,(g) reduces to an indecomposable representation 5 of its underlying Lie algebra g. 
As integrable representations of  ordinary Lie algebras are completely reducible, 5, being 
indecomposable, must be an irreducible representation of g. 

Obviously none of these proofs can generalize to quantum supergroups, as the basic 
ingredients, namely Weyl groups and complete reducibility of integrable representations, 
are lacking in this case. In view of Lusztig’s work, it even appears possible intuitively 
that a finite-dimensional irrep of a quantum supergroup at generic q may reduce to an 
indecomposable but reducible representation of the underlying Lie superalgebra in the limit 
q + 1. Fortunately it turned out not to be the case, at least for U,(gl(m I n)) and 
U,(osp(l 1 Zn)), as shown in [31 and 151. 

One of the main results of the present paper is the proof that every finite-dimensional 
irrep of the quantum supergroup U,(C(n + 1)) at generic q reduces to an irrep of the 
underlying Lie superalgebra C(n + I), and the two irreps have the same weight space 
decomposition. This result enables us to gain a thorough understanding of the structures 
of finite-dimensional irreps of U,(C(n + 1)). in particular, to write down their character 
formula, as C(n + 1) happens to be one of the very few Lie superalgebras having a well 
developed representation theory IS]. 

When q is a root of unity, we will develop a method allowing us to construct 
U,(C(n + 1)) irreps in a systematic fashion. The representation theory in this case changes 
dramatically; in particular, all irreps are finite dimensional, and (semi)cyclic irreps and 
multiply atypical irreps appear. 

The arrangement of the paper is as follows. In section 2, we prove a generalized BPW 
theorem for U,(C(n+l)). In section 3 we generalize Kac’s induced module construction for 
Lie superalgebras to this quantum supergroup at arbitrary q. and also thoroughly investigate 
the structures of the finitedimensional imps at generic q .  In section 4 we explicitly 
construct all the irreps of Uq(C(2)) using the general theory developed in the earlier sections. 

2. BPW theorem for U,(C(n + 1)) 

This section studies the structure of the ZQ graded Hopf algebra Uq(C(n+ 1)). In particular, 
a generalized BPW theorem for this quantum supergroup will be proved, and an explicit basis 
for it will also be constructed. Results of this section will be repeatedly applied throughout 
the paper. 



~~ 
~~~~ ~ 
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2.1. Definition of U9(C(n + 1)) 

Let us begin by defining the quantum supergroup U,(C(n+l)) .  Recall that Lie superalgebras 
 admit^ different simple root systems, which cannot be mapped onto one another by the 
Weyl groups of their maximal even subalgebras. As quantization treats the Cartan and 
simple generators differently from the rest, it is not clear whether the quantum supergroups 
obtained by quantizing the same Lie superalgebra but using different simple root systems are 
algebraically equivalent (It is not difficult to convince oneself by examining simple examples 
that the resultant quantum supergroups are co-algebraically inequivalent). However, we will 
not be concemed with thii problem here. Instead we merely take U,(C(n + 1)) to be the 
quantization of the universal enveloping algebra of the type I superalgebra C(n + 1) with 
the commonly used simple root system, namely, the one with a unique odd simple root. 

To describe this simple root system, we inVoduce the (n + 1)-dimensional Minkowski 
space H" with a basis (S i  I i = 0,1,2, .. . , n }  and the bilinearform ( , ) : H* x H* -+ C 
defined by 

~ ~ 

(si ,  ~ j )  = -(-I)'W 

f f .  , - ,  - 8. -6. ,+I  

ff" = 26" 

for C(n + 1) is 

ui, ~= 2&. cuj)/(ai, e:) 
aoj = (OIO, aj). 

Vi, j .  

.Then, following Kac, the simple roots of C(n + 1 )  can be expressed as 
i = 0 , 2  ,..., n - 1  

where a0 is the unique odd simple root. . A convenient version of the Cartan matrix 
A = 

Vi > 0 

We denote by A: and A: the set of the even positive  roots^ and that of the odd positive 
roots of C(n + 1) respectively. Then ~. 

A: = (S i  - S j ,  Si + Sj 2& I 0 c i -= j }  
A t  = [SO f Si I i > 0). 

'~ 

For later use, we also define 

, Ps=; cff e = 1,2 
C?€A,' 

P =Po - P I .  

Let q be an indeterminate, and define 
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i # O  

i # O  

where 

[k],! = I$- k > O  

I 1  k = 0. 

In (1). [ x ,  y }  = x y  - (- l) [x’ [Y’yx, with the gradation indices [X I  and [ y ]  defined by 

i = O  
[K i ]  = 0 Vi [e;] = [ f i ]  = 

and for any U ,  U which are monomials in e;. fi, K:’, i = 0, 1,  ..., n, [ u u l ~ [ u l  + 
[u](mod2). This makes U,(C(n + 1)) a Z2-graded algebra with U,(C(n + 1)) = U O W I  , 
where U0 = [usU9(g)  [ [ U ]  = 01, U, = {ueU,(g) I [ U ]  = I]. We will call the elements 
of U0 even and those of U, odd. We also associate with their product uv an element 
of H*,  wt(uu) = wr(u) + wt(u), called the weight, such that wt(ei) = -wr( f i )  = ai, 
wt(K:’) = 0. If w E U9(C(n + 1)) is a linear combination of monomials of the same 
weight @ E H’, we d e h e  wt(w) = p. 

The quantum supergroup U9(C(n + 1)) has the structures of a Z2 graded Hopf algebra 
with invertible antipode. One consistent co-multiplication reads 

A(K:’) = K:’ @ K,?’ 
A(ei) = e; @ 1 + Ki @ e; 
A(fi) = fi @ K;’+ 1 @fi 

and the corresponding co-unit E and antipode S are, respectively, given by 

d e i )  = ~ ( f i )  = 0 
c ( K ; )  = E(K;’) = 1 
S ( q )  = -K; I ei 

S ( f i )  = -fi& 
S(K:’) = K,F1 Vi. 

Note that {e; ,  f i 9  K: 1 i = 1.2, ...,n] generate a subalgebra Uq(sp(2n)) c 
U9(C(n + 1)). Together with [K;’}, they generate Uq(sp(2n) @ u(1)) which we will 
refer to as the maximal even quantum subgroup of U,(C(n + 1)). 

2.2. U,(C(n + 1)) ur generic 4 

In order to study the structures of U,(C(n + 1)). we introduce the Zz graded automorphism 

m(ei)  = fi m(fi) =e, m ( K i )  = Ki 
m(q) = 4-1 m(c) = c* c E c 
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and the anti-automorphism 

o(ei)  = fi w(h) = ei = K;' 
o ( q )  = 4-1 o(c) =c*  ' C  E c 

which are also required to satisfy a ( u u )  =- ( - l ) ["~~"]m(u)a(v) .  o(&) = o(u)w(u),  
for any homogeneous elements U ,  U E U,(C(n + I)), and generalize to all elements of 
Uq(C(n + 1)) through linearity. 

Define the maps Ti : U,(C(n + 1)) --f U,(C(n + l)), i = 1 . 2 , .  . . , n ,  by 

Tj(Kj)  = KjK,-''' V j  

T,(ei) = - f i K i  
Tj(fi) = -K; ei 1 

Then 

Lemma 1. The Ti,  i = 1 , 2 , .  . . , n, define algebra automorphisms of U,(C(n + I)), thus 
genmting a group which will be denoted by @. They also satisfy 

 proof.^ Restricted to the maximal even quantum subgroup Uq(sp(2n) e3 u(l)), the Tis 
coincide with the Lusztig automorphisms 191 of this quantum group. Thus we only need to 
show that TI preserves the relations~in ( 1 )  involving eo and fo. in order to prove that T i s  
are algebra homomorphisms of U,(C(n + 1)). since 'TI is the only map amongst the T i s  
which acts non-trivially on eo and fo. Consider, say, {Tl(eo), Tl(fo)} when n > 1. Now, 

Tl(eo) = -eleo + qeoel 
Ti(f0) = - fof i  +Q- ' f i fo .  . 

- 
Simple calculations lead to 

= T i (  KO - K,' ).  
Q - 4-l 

The other relations can be checkea similarly. Equation (2) can be proved by explicitly 
working out the actions of the maps involved on the simple and Cartan generator of 

The maximal even quantum subgroup Uq(sp(2n) 69 ~ ( 1 ) )  admits the following 
U&(n + 1)). 

decomposition 

Uq(sp(2n) @ ~(1)) = B-BoB+ 

where E+ is generated by [ei I i > 01, B- by [fi I i 01, and Bo by [K?', I i = 
0, 1.. . . , n). A basis for BO is given by [Kci)H(3 I r ,̂ i E Z?"), with r  ̂ = (ro, r l . .  . . , rn), 
K'" = n;a K:, H"' = n:==a((Kj - KL1) / (q j  -Q;'))". 
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Following [IO], we construct bases for B+ and B- by considering the maximal element 
T of W, a reduced expression for which reads 

T = Z  17jTi2 . . . I ;Z  

= (TIT2 ... Tn4TnT"4 .. . TZTI)(T2...T"_1T.T"_I.. .Tz) ... (Tn-lTnT"-l)T". 

We define 

Esl = el 

&,=T i ,  G2...Ti,-, (ei,) 
FB, = EzTj2.. . E,.,(&) 

FBI fi 

f = 1,2, ..., nz 

where j3, E A:, and clearly Fs, = o(Eg,) .  Also observe the following important facts [lo]: 
Eo, E B+, FB, E B-, and 

and similar relations for q$ and &i. 

Lemma 3 .  

and similar relations for &i, where 
respectively. 

and &+, are understood as e-,, and r$-" 
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Lemma 4,  

where 

7047 

(7) 

(81 

In (8). p, U = 4~1,  f2, . . . , i n ;  ci,? E C[q, q-'1 may be nonrvanishing only when 
wt(E% = sign(u)6lV, - sign(pj8,,,, and similarly for E C[q,q- ' ] .  

Define 

P O )  = ($,)@I($2)d2.. . ( ~ ~ ) o " ( ~ - ~ ) o - " ( ~ - ~ + , ) ~ - ~ + l  . . . (*-p 
r(8) = (c l )o-q4-2)o-z .  . . r = ~ t d * = l . v i )  

e*[ = 0, 1 

. . . ( 4 , ~  e*i = 0, I 

r = rt&=l.Vi) 

Lemma 5. (i) Any product of @ s  (resp. 4s) can be expressed as a linear combination of 
Pi) (resp. rcB̂ )), ê  E z?: 

Proof. Part (i) is a direct consequence of lemma 2. To prove (ii), we note that any non- 
trivial relation of the form cirte) = 0 would lead to r = 0 in U,(C(n + 1)). Then it 
would follow that in any linear representation of U,(C(n + I)), the z defined by 

(ii) l=[il (resp. rc"), 6 E @ are linearly independent over C[q, q-']. 

z=Fr  (9) 

vanishes identically. But it is easy to construct representations in which z is non-zero. 

For later use we define the following vector spaces 

\I, = @ C[q, q-l]l='$) 
a 

= @c[q, q - I ~ r ( ~ ) .  
ci 

Direct computations can easily establish: 

Lemma 6. Let a E U,,,(sp(Zn) fB u(l)), and b E U,(sp(Zn)) c U,(C(n + 1)). Then 

[b ,  rl = 0 
[b ,  I'] = 0 
[a,  21 = 0. (10) 

Proof. The first two equations follow from lemma 3. They also lead to the'last equation. 
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Now we have the following generalized BPW theorem for the quantum supergroup 
U,,(C(n + 1)): 

Theoreml. Let U+ (resp. U-)E U,,(C(n + 1)) be the subalgebra generated by {ei I 
i =0, 1, ..., n ]  (resp. [fi I i =0,1, .... n]). Then 

(i) U,,(C(n + 1)) admits the mandar decomposition 

U,,(C(n + 1)) = U-BoU+ (11) 

or more precisely, the multiplication of U,,(C(n + 1)) gives rise to the C[q, 4-'] module 
isomorphism 

U- @ Bo @ U+ + U,,(C(n + 1)) 

(ii) U+ and U- respectively have the bases 

( E W J )  I k  ̂ E z;'.G E Z?} {l-(e^,F(i' I k  ̂ E z:,G E Z?] (12) 

(iii) The following elements form a basis for U,,(C(n + 1)) 

(ydl"i)K")Hl"'E'hTJ? , ~ , ~ E Z " ' , ~ , S * E . Z " + ' , ~ , ~ ^ ' E Z ? ] .  + + (13) 

Proof. Part (i) is a consequence of the defining relations of U,,(C(n + 1)). U+ is spanned 
by (E(b=(')  I E Zf.6 E Z p ]  because of lemmas 5 and 3. It follows from lemma 5 
and equation (3) that these elements are linearly independent. Similarly we can show that 
(P61FiE) I k  ̂ E Zf.6 E @] forms a basis of U-. (iii) follows from (i) and (ii). 0 

2.3. U,,(C(n + 1)) at roots of unify 

Tn this subsection we assume that q is an N t h  primitive root of unity. We define 

N N odd 
Nf2  N even. 

N'= { 
Let Z, be the central algebra of the Zz-graded algebra U,,(C(n + 1)) over the complex field 
C ,  and let ZO be the algebra generated by the following elements 

( K 3 "  (K:)~ i < n  ( ~ 8 , ) ~  ( ~ 8 , ) ~  t = 1.2, ..., n'. (14) 

It is well known that [lo] ZO is contained in the central algebra of the maximal even 
quantum subgroup Uq(sp(2n) @ ~ ( 1 ) ) .  In fact, we also have 

Lemma 7 .  Z,, and Zo are. as defined above. Then 

zo c z , .  

Proof. The proofs is exactly the same as lemma 5 of [3], thus will not be repeated here. 

ZO is a commutative algebra with no zero divisors. Following [lo] we define the 
quotient field Q(Z0) of ZO,' and let 'QU,(C(n + 1)) = Q(Z0) @z0 U,(C(n + 1)). Then 
QU,,(C(n + 1)) is finitedimensional, with a basis 

( r ' 8 ) ~ ' i ' K i ' ' E ' h ~ c ~ )  I i , i ~ Z $ ; i ~ Z ; + ' . r ,  E Z ~ , ; ~ , $ E Z ? ) .  (16) 
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Proof. (i) is required by the irreducibility of V. To prove the first part of (ii), we note that 
the necessity of L = 2n is obvious. Let us assume that L = 2n, i.e., rV'O1 g M, but V 
is atypical. Then there must exist at least one non-vanishing vector U E M. Now we can 
apply elements @+i to U to obtain another vector in M of the form ru, for some U E V'o'. 
Since r commutes with all elements of U,(sp(Zn)), the irreducibility of V'O) with respect 
to U,(sp(;?n)) implies that TV"' c M, which contradicts our assumption. The second part 
of (ii) follows from lemma 6. 

Note that (17) is equivalent to @*U = 0, Vu E V'". In any given irreducible 
U,(C(n+ 1)) module, there always exists a subspace obeying this condition. Thus (17) does 
not impose any restrictions on the irreducible module V ,  and the construction developed 
above yields all irreps of the quantum supergroup U,(C(n + 1)). 

We will call V a highest weight U,(C(n + 1)) module if there exists a unique vector 
U" E V, with A = xE0 Ai& E H*, Ai E C, such that 

eiu" = 0 
@+iu" = 0 
Kiu" =qq''i. ")U" = &I i=O, I ,  ..., n. (19) 

i = 1 . 2 , .  . . ,n 

Observe that the sign factors ei may be eliminated by the following automorphism of 
U,(C(n + 1)): 

ei H €;lei fi H f r  Ki H 6;IKi Vi.  

Hereafter we will assume that to any irreducible U,(C(n + 1)) module, an appropriate 
automorphism of this kind has been employed to cast the last equation of (19) into 

Kid'  = q'''. "'U" i = 0.1,. . . , I t .  

Since it is necessarily true that U" E V'O', V is a highest weight module if and only if 
V'O' is of highest weight type. To emphasize the role of the highest weight, we denote by 
V'O](h) the Uq(sp(2n) fB u(1)) module V'O', and introduce the new notation V(A), V(A) 
and M(A).  respectively, for the v, V and M constructed from I"''. 

It immediately follows from our construction that the U,(C(n + 1)) module V(A) 
is finite-dimensional if and only if the associated irreducible Uq(sp(2n) fB u(1 ) )  module 
V'''(A) is finite-dimensional. Since a finite-dimensional irreducible Uq(sp(2n) @ ~ ( 1 ) )  is 
uniquely characterized by its highest weight, so is the irreducible U,(C(n + 1)) module 
induced from it. Therefore, 

Proposirion 1. (i) The irreducible highest weight U,(C(n + 1)) module V(A) is finite 
dimensional if and only if 

(ii) A finite-dimensional irreducible U,(C(n+ 1)) module V(A) is uniquely determined 
by its highest weight A. 

Note that Ki,  i = 0, 1, ..., n,  are all diagonalizable on V'O)(A). Thus they are also 
diagonalizable on the entire U,(C(n + 1)) module V(A). Define the weight space 
V, c V(A) to be the vector space over C[q, 4-'1 consisting of all the vectors U E V(A) 
satisfying Kiu = q'"%~. Define Sp., to be the set of all the distinct ws such that 
dimclq,,qV, # 0. Then'; 

i 

v(A) = @,o,t~pb Vu, 
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By assigning the ordering Si > Sj > 0, Vi  < j ,  we achieve a partial ordering of 
the elements of H*~with the same imaginary part. Then it is clear that w < A, and 
A - w = miai, mi E Z + .  

To gain further understanding of the smctures of V(A), we now construct the highest 
weight vector of the irreducible Up(sp(2n) @u(l))  module c V(A). Consider the set 
of vectors (U"), U('), . . . , dLI] C V(A) defined by 

u(0' =~U" 

@"ut'-') = o 
u(kl = @&U(k--L) # 0 

if wt(@,) > ~ t ( @ ~ ~ )  

where @k, U = f l ,  f 2 ,  . . . , fn. Since @i, i = 1,2,. . . , n,  all q-anticommute, the existence 
of the vectors [do', dI),  . . , , U'!)] with fit  =- 0, Vc = 1 ,2 , .  . . , I ,  is g-teed, where U(!) 
is annihilated by all ei. Now if U(') is also annihilated by all @-{, then I = L; otherwise 
there must exist a @*,+x, pl+l c 0.which does not annihilated this vector, but all @-i with 

> wt(@w,+t) do. We set u(l+l) = @p,+,u(f). Using lemma 2 we can easily see that 

,#,iu(l+ll = 0 Vi 
@-;U"+" = o i > -/.qfI. 

Continue this pmcess we will eventually &ve at vtL1.  It follows from the construction that 

Lemma 9. All dk), k = 0, 1,. . . , L ,  are Up(sp(2n) @ ~ ( 1 ) )  highest weight vectors. 

In particular, U(') is the highest weight vector of the irreducible Uq(sp(2n) @ ~ ( 1 ) )  module 
VL) c V(A). If V(A) is typical, then = ru" can be raised hack to U" by the action 
of i=. Using the above lemma and lemma 4 we can compute 

l=h" = z(A)u" 

Therefore, 

Proposition 2.  The irreducible highest weight U,(C(n + 1)) module V(A) is typical if and 
only if 

z ( N  # 0 (22) 
where z(A) is defined by (21). 

On any irreducible highest weight U,(C(n+ I)) module V(A) with a real highest weight 
A, we introduce a sesquilinear form (. I .) : V(A) 8 V(A) + C[q,q-'],  which satisfies 
the following defining relations: 

(i) If U" E V(A) is the highest weight vector, 

(U" [,U") = ~ l  

(ii) 

(U I au) = (w(a)u I U) Va E U,(C(n + 1)). U. U E V ( h )  

where o is the anti-automorphism defined before: 
(iii) 

(CIUI + C 2 U 2  I U) = C ; h  I 4  +c,*(uz 14 
(U I CIUI f C 2 U Z )  = CI(U I U I )  +cz(u I u2) 
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where ~ 1 . ~ 2  E C[q ,q - ' ] ,  c: = ~ ( c ; ) ,  U ~ , U I ,  U E V(A). Note that this form is well 
defined as long as the highest weight is real, and has the standard property (U I U) = ((U I 
u))* ,Vu,  U E V(A). Also, 

Lemma IO. The form (. 1 .) : V(A) C3 V(A) + C[q,q- ' ]  is non-degenerate, 

Proof. The proof is rather straightforward, we nevertheless present it here. Let Ker C V(A) 
be the maximal subspace such that for any k E Ker, (U I k )  = 0 , V u  E V(A). Then 
(U I ak) = ( o ( a ) u  I k) = 0 , V a  E U,(C(n + I)), U E V(A), i.e., Ker is an invariant 
subspace. Therefore we must have Ker = (0) as required by the irreducibility of V(A). 

Now we compute the value of (U(') I dL) ) ,  which is non-vanishing as required by the 
the non-degeneracy of the form. As V y k J  are Uq(sp(2n) @u(l)) maximal vectors, it follows 
from lemma 2 that @ p k ~ " - ' J  = 0. Thus 

Therefore, 

Since (dL1 I dL)) # 0, we have 

Let I c C[q ,q - ' ]  be the ideal generated by 9 - 1. It is clear that C = C[q ,  q-']/I. 
We define C(A) = (C[q, q-']/IJ c3 V(A), and Vu = [C[q ,  q-']/I] @ V, for any weight 
space V, C V(A). Then 

dimcV(A) = dimc,q,q-alV(A) 

C(A) = @uwsspn Vw 
Denote by 6 ,  5, i;, and 1 respectively the endomorphisms on ?(A) defined by the V(A) 
endomorphisms ei, fi, (Ki - KE:')/(qi - qt:'), and K:' through extension of scalars. It 
can be proved that 

Lemma 11. The 6, 3, h;, i = 0,1, ._  .,n, satisfy the defining relations of the Lie 
superalgebra C(n + 1). Thus F(A) furnishes a U(C(n + 1)) module. 

In particular, U" remains to be a highest weight vector in V(h). Repeatedly applying the 
3 ' s  to it generates the entire U(C(n+l) module V(A). Therefore, F(A) is indecomposable. 
It immediately follows that 

Proposition 3. The U(C(n + 1) module V(A) is typical and irreducible if and only if the 
U,(C(n + 1)) module V(A) is typical. 

When the highest weight A is real, we denote the restriction of the form (. I .) on V(A) 
by (. I .)o. which maps V(A) @c V(A) to C. Then (. I .)o satisfies similar properties as 
(1H3). Furthermore, 

Proposition 4. The form (. I .)o : V(A) & V(A) + C, is nondegenerate. 
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Proof. Since the U(C(n + 1)) module V(A) is indecomposable, for,every non-vanishing 
U E C(A) there exists at l&t one element 6 E U(C(n  + 1)) which is a product of some 
4 ; s  (if Y € V(L)(A),  then 4 = I), such that the vector U = 4u  # 0, and U E V('j(A). If 
the restriction of (. I .)o on F'L)(A) is non-degenerate, then (U' I v)o does not vanish for 
some elements U' E VL)(n): NOW 

(6(4)n' I u)o = (U' I 4 4 0  # 0 
where-6 is the q + 1 limit of the anti-automorphism o. Therefore the form (. I .)o cannot 
be degenerate on V(A2). The converse is also obviously true,' thus we conclude that (. I .)o 
is non-degenerate if and only if it is non-degenerate on C(')(A). 

It follows from the theorem of Lusztig and Rosso [7] that C(L'(A) is an irreducible 
sp(2n)  @ ~ ( 1 )  module, with the highest weight vector U(') which is the q -+ 1 limit of U('). 
Therefore (. I .)o will be non-degenerate on ?'U(A) if (U(') I U(')), # 0. This is indeed 
that case, as it follows from (23) and (24) that 

L k 
~(U"' I fi'")o = n (80 -apt ,  A + E[& - S,,] # 0. 

k l  :=I 1 
The non-degeneracy of (. I .)o implies that.the indecomposibie U(C(n + 1)) module 

V(A) is irreducible. To see this, we note that if F(A) was reducible, tien there must exist 
at least one U E ?(A) which could not he mapped to the highest weight vector U", or 
equivalently 

(U" I = 0 vi  E (I(C(n + I)). 
This would lead to 

( 6 ( c i ) U "  I U ) O  = 0 vi E U(C(n + 1)).  
V(A) being an indecomposible U(C(n + 1)) module, every element of it can be expressed 

;U", ci E U(C(n  +'I)). Thus equation (25) would imply the degeneracy of (. I .)o. 
Combining the above discussion with proposition 4, we arrive at the following 

Theorem 2. Let V(A) be an irreducible U,(C(n + 1)) module with an integrable dominant 
highest weight A(i.e., satisfying (20)). and V(A) be as defined before. Then V(A) is an 
irreducible U(C(n + I)) module which has the same weight space decomposition as V(A) .  

Remarks. 
(i) The form (. I .)o can be defined independently of (. I .). 
(ii) The proof of Theorem 2  makes^ essential use of (24), which can be proved without 

(iii) The forms (. I .) and (. 1 .)o are merely employed to make the proof of theorem 2 

Define the formal character of a finite-dimensional irreducible U,(C(n + 1)) module 

resorting to the form (. I .). 

more coherent; they can be avoided entirely. 

V W )  by 
chV(,,) =~ E dimciq.,-llVUeU. 

wcSPh 

Using theorem 2 and the results of [SI, we obtain: 

Theorem 3. Let V ( A )  be an irreducible U,(C(n + 1)) module with an integrable dominant 
highest weight A. Then 
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where W represents the Weyl group of the sp(2n) c C(n + 1) subalgebra, and 

if (A + p , y )  # 0 
if 3y, E A t  such that (A + p .  y.) = 0. 

Vy E AT 
A t  - ya AT 

A;(A) = 

It should be noted that when A E H' is integrable dominant, there can exist at most one odd 
root yo E A; rendering (A + p ,  ya) = 0, i.e., no two factors in the product expression (21) 
of z(A) can vanish simultaneously. Adopting the terminology of the representation theory 
of Lie superalgebras, we say that a finitedimensional irrep of U,(C(n + 1)) at generic q 
is either typical or singly atypical. We will see in the next subsection that this is no longer 
hue when q is a root of unity. 

3.2. At roots of unity 

The method developed in the last subsection for constructing U,(C(n + 1)) irreps works 
equally well when q is a root of unity. Because of (16), an irreducible Uq(sp(2n) c3 ~(1)) 
module V'O' over C is necessarily finite-dimensional, thus we conclude that all irreps of 
U,(C(n + 1)) at roots of unity are finitedimensional. 

Properties of the irreducible U,(C(n + 1)) module induced from V(" are completely 
determined by those of V@),  while V" itself is uniquely characterized by a set of complex 
parameters associated with the eigenvalues of the generators of ZO.  We say that V is cyclic 
if the eigenvalues of all the ( E B , ) ~  and (FP,)~ are non-vanishing, semicyclic if some are 
non-vanishing, and of highest weight type otherwise. 

Typicality of V is defined in exactly the same way as in the case with generic q. V is 
typical if and only if the eigenvalue zv of z defined by (9) on VLo) is not zero. We have 

dimCV = 22"dimcV'o' ~ if zv # 0. 

When V is a highest weight module, there exists a vo E V such that 

Kjvo = aivo 
e ivo=O i = O , l ,  ..., n 

where ais are complex parameters. Then the eigenvalue zv of z is given by 

,yq'P.Y' - -1 +.Y) =r 4 zv= n 
Z&-& = n ak 
%+a, = =&-S. n a k ,  

YEA: 9 -9-' 
i- l  

k=O 
n 

X=i 

Following the convention of the representation theory of Lie supedgebras, we call 
an atypical U,(C(n + 1)) module V singly atypical if only one factor in zv is zero, and 
multiply atypical otherwise. There exist ai values rendering V multiply atypical. Therefore, 
U,(C(n + 1)) admits (semi)cyclic irreps and multiply atypical irreps at roots of unity. In 
contrast, all finite dimensional irreps of Uq(C(n + 1)) at generic q are of highest weight 
type, and either typical or singly atypical. 
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4. Irreducible representations of Vq(C(2)) 

In this section we construct all the highest weight irreps of the quantum supergroup Uq(C(2))~ 
at generic q and all the irreps at roots of unity. For convenience, we change the notation 
from the general case by letting 

~. 

@ + + @ I  @ - = @ - I  

4+ =41 $ - = & I  

e = el f = f1. 
When the deformation parameter q is generic, Uq(C(2)) has the following basis 

((4-)"(56+)R+fiCK'iiH(iiei(@+)B;(@-)BL 1 k,  I E z+, F, j E z:, e*, e; E (0,1)). 

Let V(A) be an irreducible Uq(C(2)) module with highest weight A = A060 + A A ,  
and maximal vector uA.  It is finite dimensional if and only if AI E Z+, and in that case, A 
must satisfy one of the following three mutually exclusive conditions: 

( i ) ( A + p , y ) # O  VY EAT . .  
(ii) (A + p. SO - SI) = 0 
(iii) (A + p ,  60 + 81) = 0. 
We explicitly construct V(A) for all the cases below: 
(i) ( A + p , y )  # O  VY E A:; 

I e- e+ i A V U )  = @ C [ q ,  q- 156- 4+ f IJ . 
B*EIO.IJ 

iC(O.1 ..... 2.11 
(ii) (A + p ,  So - 61) = 0; 

(iii) (A + p ,  So - 8 1 )  = 0; 

It is interesting to observe that in all the three cases with A1 Z+, V(A) has finite- 
dimensional weight spaces. In the limit 4 + 1, V(A) reduces to an infinitedimensional 
irreducible U(C(2)) module, which has the~same weight space decomposition as V(A) 
itself, 
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(iv) ao -a;' = aoalq-2 - a;'a;'q2 = O; 
~(4, ai) = v"'(a0, a i )  @ v"'(a0, a i )  

V"'(ao,al)  = @c~L_~'u+ .  
d-2 

i=O 

Having explicitly constructed the highest weight irreps of Uq(C(2)). we now consider 
the (semi)cyclic irreps. We start with the simpler case that N" is not divisible by 4. The 
(semi)cyclic irreducible module V'O' over the maximal even subalgebra U,(sp(Z) fB u(1))  
is N-dimensional, and labelled by fourparameters. Explicitly, we have the following basis 
{U; I i = 0,1,. . . , N )  for V!O), with the actions of the generators of Uq(sp(2) fB 4 1 ) )  
defined by 

KOUO = a0 
eluo = xvN-1 

f i u i  = u;+l 

Kluo = aluo 

f1uN-l = x'uo 
i = 0, 1, . . . , N - 2  

where the complex parameters x and x' do not vqish simultaneously, and 

i = 1,2 ,..., N - 1. (29) (q21 - q-Zi)(alq21i-l)  - a;lq-21i-ll ) 
q2 - q-2 

xx' # 

For simplicity, we introduce the new parametrization 

and also define 
(aob - a;'b-')(aob' - a;'b'-') Q =  (s - q-')* 

Denote by V the irreducible (semi)cyclic Uq(C(2)) module induced from V'O'. Then 
(0 If Q # 0, 

N-1 

V"' = @(C@+u; e3 C&Uj) 
i=O 
N - l  

V'2' = @ C#- @+ U, 
i=O 

(ii) If Q = 0, but either x' # 0 or aob - a;lb-l # 0, 

= v'o' a3 
V"' = @ C&u; 

N-l 

i=O 

(iii) If Q = 0, x' = 0,  aob - %-'b-' = 0, 
v = V'O' V"' 

N-2 

V"' = @C&Ui. 
i=O 
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When N” is divisible by four, the (semi)cyclic irreducible module V(O1 over the 
maximal even subalgebra Uq(sp(2) @ u(1)) is 2N-dimensional, with a basis [U;*’ I i = 
0.1,. . . , N - 1) such that 

(*I - h U C * l  (i) - h p l  eluO - N-1 f l u N - l -  0 

f , U j * )  =U;;; i = 0,1, .. .) N - 2 

K1 U;*’ = U. (*) KoyF’ = oou(T) (32) 
where again x and x’ do not vanish simultaneously, and obey the constraint (29). Note that 
from this basis we can always obtain a new one in which KL*’) are diagonal. Let 

N-1 
I.‘“’ = V‘O’ + @ VTOI v:p’ = @CV,’*). 

i=O 

Then the irreducible Uq(sp(2) @ ~ ( 1 ) )  module V induced from V‘O) is given by 
(0 If Q # 0, 

5. Conclusion 

We have presented a systematic treatment of the representation theory of the quantum 
supergroup Uq(C(n + 1)). The induced module construction developed here allows the 
irreps of this quantum supergroup at arbitrary q to be constructed. Structures of the finite 
dimensional irreps at generic q have been investigated. In particular, it has been shown that 
every such irrep is a deformation of an irrep of the underlying Lie superalgebra C(n + 1). 
The character formula for the finitedimensional irreps of U,(C(n + 1)) is given. 

We have also shown that when q is a root of unity, all irreps of U,(C(n + 1)) are 
finite dimensional, and (semi)cyclic irreps also exist. The typicality criterion for highest 
weight irreps are given. The structures of the typicals are understood, and the general 
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framework has also be set up for analysing the structures of the atypicals. However, further 
investigation into this problem will necessarily require detailed knowledge of the imps of 
the maximal even subalgebra U9(sp(;?n) 

Reference [3] and the present paper essentially complete  the representation theory for 
the type4 quantum supergroups at generic q.  With certain modifications, the techniques 
developed in these papers can also be generalized to systematically study the representation 
theory of the type-I1 quantum supergroups. Results will be reported in a forthcoming 
publication. 

u(1)) at roots of unity. 
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